Int. J. Heat Mass Transfer. Vol. 7, pp. 901-919. Pergamon Press 1964. Printed in Great Britain

GENERAL SOLUTION OF THE EQUATIONS OF PARALLEL-
FLOW MULTICHANNEL HEAT EXCHANGERS
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Abstract—The paper presents general solution of the systems of differential equations describing the
distribution of temperature and temperature difference of fluids in exchanger channels. These
equations have been derived in another paper [13]. It is found that for # channels the number of
equations is at most # or # — 1. Solutions are given in a form enabling introduction of the boundary
conditions. These solutions are obtained in the general case of channels forming a bundle and
exchanging heat according to the principle of the maximum possible number of heat exchanges
between channels and in most common practical cases in which the number of heat exchanges is

reduced.
NOMENCLATURE
T Y integration constants;
axl, specific heat transference of the channel k for heat exchange be-

tween the channel k and / of the set 1, 2, ... n;
C, Gy ... Cy, integration constants;
D, Dy, Dy, ... Dy, determinants in Cramer’s formulae;
Dy, Dy, ... Dy, determinants obtained from the determinants in Cramer’s

formulae;

i, elements of the set 1, 2, . . . n with the condition { < j imposed
on combination ij;

i, (i), number of roots of the characteristic equation;

k, 1, elements of the numerical set 1, 2, .. . n;

ri (=ry, 7. . .r), integration constants constituting roots of the characteristic
equation;

ty (= ty, &y, . . . tn), local temperature of the fluid flowing in the channel & of the
set1,2,...m;

X, length, or annular co~ordinate of the channel;

Yy =t — 1y temperature difference between fluids flowing in the channeliand j.

1. INTRODUCTION

PARALLEL-FLOW multichannel heat exchangers constitute a large group of heat exchangers.
Figure 1 shows the most common practical types belonging to this group. Simple particular
cases were considered by other authors [I-12]. A generalization of the methods for their solution
to more complicated cases requires the solution of the general problem of heat exchange between
n parallel channels forming a bundle as shown in Fig. 2. Such a general problem could be reduced
to any particular case by introducing appropriate boundary conditions.

Longitudinal distribution of the temperature in the fluids #(x) or the distribution of the
temperature difference pri(x) = 1(x) — t1(x) between two channels k and / in a bundle of »
heat exchanging channels are described by systems of homogeneous linear differential equations
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g (g) Wave-formed noncross heat exchanger (in
line or concentric).
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FIG. 1. Schematic drawing of more important types of parallel-flow multichannel heat exchangers.

of the first order [13]. These equations have been derived under the assumption of maximum possible
number of heat exchanges between channels and the conventional assumption of the theory of
heat exchangers. There are:

Fic. 2. General case of parallel-flow multichannel heat
exchanger in the form of a bundle of channels.

1. The heat-transfer process is stationary. )
2. The walls of the channels do not conduct heat in the direction of the axis of the cl_1annels.
3. The heat-transfer surfaces separating fluids flowing in channels k and / are of equal perimeters.
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The equations just mentioned are for ¢4

dt A
—‘! + tIZalk Y awti =0,

k=1
ds
2+r22a2k —-Zazktk =0,

dt
—"+tn2ank —Eanktk =0.

This is a system of n equations with n unknown functlons 4, 1, . . . ty. In general, we can write

dt
—k + tkz arr — Z apity = 0. (1a)
k=1
Next for yi; we have
d d b
yn—i—Zamylk —-Z awyix =0,... ym +Ealky1k —Z ank Yuk =0,
d d
yﬂ-i-zazk}’zk —Zalk.Vlk =0,... y2 +Z Qo Yox “Eanlc}*'nk =0, —
d d
ym + 2 Qnk Ynk — Z aik yie =0,... ynn + Z ankynk -—2 ank Yur = 0.

In these equatlons k, I are any two elements of the set I, 2,...n and ay is a specific heat
transference* of the channel k for heat exchange with the channel /. The set of ax; constitutes
a square matrix [ax:). The specific heat transference is defined as ax; = kgihgi/ Wi, where kixr = ki
is heat-transfer coefficient between the channel k and /, hx; = hy is the common perimeter of
channels and Wy is a water equivalent of the fluid flowing in the channel k.

The heat transference represents the ratio of the heat that transfers across the wall of a channel
to the heat flowing along the wall. Therefore it characterizes the capability of the channel to ex-
change heat with another channel or the ambient medium. Its value is O for adiabatic flow and o
for perfect non-adiabatic flow.

The sign of Wy and hence of ax; depends on the flow direction. The equations have been written
for the same flow directions according to the direction of the co-ordinate x. Therefore for channels
with opposite flow directions the sign of ax; must be changed. Of course, axx = 0. We assume that
the remaining ax; # aix are not functions of x or 7 and that they are constant. Hence equations
(1) and (2) have in our considerations constant coefficients.

Instead of k, / we can use the symbols i, j with the condition i < j for elements of the set 1, 2,

. n. Then equations (2) which are elements of the square matrix, can be divided into three
systems. In general we can write

dy;
~Z—j + Z ik Yik — E @Gr yixk =0 (2a)

d
y“ -l— Z sk Vi — Z aw yirk =0 (2b)

* In other words this is a number of heat-transfer units per unit linear or angular length of a channel k. The
number of heat-transfer units of the channel is denoted often by NTU [W., M. Kays and A. L. LoNpoN, Compact
Heat Exchangers. McGraw-Hill, New York (1958)].
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Ay
dx

System (2a) contains the equations placed above the main diagonal of equation matrix (2). The
system (2b) contains the equations on the main diagonal and has trivial zero solutions. The system
(2c) contains the equations placed below the main diagonal. Since y; = -y equations (2¢) are
identical with equation (2a) and we can consider only (n2 — n)/2 equations (2a) or (2¢) for dy;;/dx
or dyﬁ/dx.

" n ‘
%— E aik Vik E aik Vi == 0. (ZC)
kel k-l

2. GENERAL SOLUTIONS OF THE SYSTEM OF EQUATIONS FOR .
System (1) can be reduced to the Cauchy normal form by omitting the terms containing the

factors ai = 0 in the second sums and by ordering the equations according to the subscripts
1,2,...no0ft.

dt n

Sl Z arx fl + e fz + PR din In.

dx Pt

d{z "

g =T s 1y — S og by a; f,

dx 211 k—z:l 2k Ip + 2n In . (3)
dt #

J: an1t1+ an2[2+..._2ank1n.

dx k=1 J

The functions depending linearly on their derivatives can be only exponential ones. Therefore a
particular solution (i) of system (1) can be written in the form

1) =o e, ty=afer?, .. . ty =al e’ 4)
Functions (4) substituted in equations (3) give a set of homogeneous linear algebraic equations
of the first power.

n ) : . 1
—(ri -+ XY aw) o’ + @ 4 ... i P =0,
k=1
n ) X
Ay af) - (rg 4 2 am) o 4L azp i = 0,
=1 (%)
+ » n .
an1 a(ln “I" Qna a(21)+. e 7T (ri +lzlank) aﬁ:) = 0.
= ~

This set determines the constants a{?, af, . . . @ in terms of one of them at least a{ which should
be chosen as an arbitrary constant, in function of the constants r; and prescribed coefficients a;.

It is known from the theory of algebraic equations that set (5) has at least one non-zero solution
for af, af, ... a® if its characteristic determinant is zero.

n
—(r + X mg) e PO an
k=1
5
ay i+ ... Qap,
k=1

=0. (6)

.........................

n
an1 Ana . . . - (ri ’1L' 2 a’ILk)
k=1
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This condition constitutes the characteristic equation of system (3) and determines the constants
r; which are the roots of this equation. The number of these roots is n because equation (6) is of
degree »n in r;. Thus functions (4) are particular solutions of equation (3) for /i =1, 2,...n.

To obtain the general solution of the system (3) it is necessary to verify first, whether the roots
are simple or multiple ones. We can exclude at once as non-interesting from the physical point of

view the case of multiple zero-roots giving particular solutions (4) in the form of constants «o{’,
ald) a®
9, ald,
The question of these roots is answered in a general manner by the following theorem.

Theorem 1.
If ai; = 0, then equation (6) has simple roots only.

Proof
Let us transform determinant (6) in the following manner, for instance:

We add to column 1 all the other columns.
We cancel the coefficients a;; = 0 occurring in the first column,
We subtract row 1 from all the other rows.

We expand the determinant thus obtained with respect to the first column.

Since (— 1) = 0, we obtain

n

—{r; + 3 @ + ay) dag = dygeee zp — Qin
k=1

n
ap —ap —((rit+Xax+ay... asn — A
T k=1 =(.(6a)
kil
Az — typ ns — @z ... — i+ X anx + aw)
k=1

It is seen that r; is a factor of determinant (6a). This means that for a;; = 0 the constant term
of equation (6) is zero.* This equation has therefore zero-root r, = 0.

Other roots are identical with the roots of non-homogeneous equation (6a) of the power n — 1
obtained from homogeneous equation (6) of the degree n.

We observe that determinant (6a) of the order n — 1 is different from every minor of the order
n — 1 of determinant (6). Therefore the remaining roots cannot satisfy simultaneously different
algebraic equations with different coefficients and all these minors must be different from zero and
linearly independent.

Now we can consider the values of the first derivative of equation (6) for ri=ryr, ... ry.
Differentiating determinant (6) we have

* This result can be obtained in a different manner on the basis of the properties of the characteristic poly-
nomials of a square matrix.
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n
—(ri + X as) (5T T don
k=1
n
a3 —m+ XY an) ... A3n
k=1
n
Adpg dns —(rn+X ank)
k=1
n
— (ri + X a1x) Gy ... ain
k=1
n
+ sy —(re + X as) dsn
k=1
n
an1 ans —(ri + X anx)
k=1
n
— (ri + 2 awx) Gyp .. ai,n-—1
k=1
n
+ an — (1 + 2 ax) a2,m—1
k=1
n
dn-1,1 ap-1,2... —(H+2 an-1,%)
k=1

This derivative is the sum of the n principal minors, of the order n — 1 of determinant (6) and is
a polynomial of the degree n — 1 in r;.
We must consider the possibility of three cases:

1. The derivative is zero and all the summands of the sum are zero.
2. The derivative is zero and not all the summands are zero.
3. The derivative is different from zero and not all the summands are zero.

Case | is impossible because the derivative is a linear combination of minors. Each of them
have been found to be different from zero for all 7.

Case 2 constitutes a singularity of case 3 and cannot influence the character of r; because the
derivative is the linear combination of equations which are not satisfied for all r;.

Case 3 is thus a general one. Hence it follows that the roots of equation (6) are simple.*

On the basis of Theorem 1 we find that n — 1 equations of set (5) are linearly independent and

only one constant af? can be chosen arbitrary. The remaining constants a{’, af’, .. .o |, o | ... a?
can be expressed in terms of it.
Denoting by D@, DY, DY, ... D@\, DY, |, . .. D% the determinants in Cramer’s formulae

obtained from the minors of the order n — 1 of determinant (6) we can express the constants a{?,
af®, . .. ai by
22 n

* Paper [14] demonstrates the validity of Theorem 1 although for solving simple problems it is not necessary to
use it.
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<

(i) 0]
o) = D; = o 9
! D) k' pay
o Q
ad = ._D,Z R a(i)gl
2 D k. p@»
() (i)
ald | = pil;l = gD ‘@klfl
k=1 77 DO kK pt f\ @)
af’ = arbitrary constant,
(i) i)
o' Dl<l+1 0] gklﬂ
k+1 7 po T % pw
(i) (i)
ald = D’: E—— "t
n DO k' pw

-

where, as is known, (i) = 1, 2, ... n are superscripts denoting the roots of equation (6). The
determinants 2V, 29, . 9"’ v ZE, ... DY are obtained from the determinants D{’,
pg’, e l)jjll, DY |, .. D(’) by rejectlng the constant factors o (= oV, a{?, . . . a{) occurring
in successive columns 1, 2, n.

The determinant D® is obtained by cancelling one column k and one row of determinant (6).
This column and row can be optional, because all the minors of determinant (6) are non-zero as
follows from Theorem 1. The determinants 2, 29, ... 2¥ |, 2, ,,... 2V are obtained from
the minor D ® by replacing its successive columns w1th the cancelled column k with opposite sign.

It is known that the set of all n = imax linearly independent particular solutions in the form

£D, #D, ... £, (the first solution)

12, #2, ... 12, (the second solution)

..........

where
t(ll) — a(ll) erlx’ t(zl) — a(zl) erlx, .. tz(xl) s agll) erlx,
D = o ers?, 1P = aoP en?, .. 1D = a@ery7,
tgn) — a(ln) ernx’ t(zn) — 0‘(2”) ernx, . t;”) — a;n) erﬂz,

determines the general solution in the form of the following set of linear combinations of
particular solutions

= Clt(l) + Cztgz) + « v Cnt(n),
L =GP + Gt? 4+ ... Cut??, ®

...................

th = GtV 4 Cot@ + . .. Cpt',
3H—H.M.
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This solution can be written in a form more precise and more convenient for practical
applications. Using the formulae (7) determining the constants {’, «f’, . . . «' we obtain

700 G g
. (1 rE (2) 7 r.r L [C T P
I C; af pm G, af; pm e .. Cpal Py €5
t — C a(l):(z(zl)erlz + C,al® 9(22) eral e C,, alm :CZ,(ZH) er.t
2 1% D(l) i 2 Mk D(Z) 2 T e n Yy D(") n, '
|
...................................... !
71 [7:9)) G |
— () TRk or 2 @ Tkl ara tn Tk T g i
ty-1 = C; af P e + C, af D& et 4+ ... Cpayf D er.t, | )
.
{
|
ty = Cyal)en? 4+ Cyaf? ems” 4 Cual? em?, |
7a0 G Gitm
k-1 7K1 ‘ il oy o |
treq = Cqyall ert 4 C, a2 Kot . alm K r.x
k+1 1% po ©F T F2% pe Ca k pn) € |
g G Q) 1,
- (y ~n : @7 e (m " n
tn = Cl ak _D(l) €r1" + Cz ak) @ ers¥ i Cn (lkn D(n) ey, JI
The arbitrary constants af’ (== afl’, ¢, ... o{®) which are different for different (/), can be

included in the constants Cy, Cy, . . . Cy, viz. o in Cy, o' in Cy, ... af in Cy.

Moreover, from the form of determinant (6) it is evident, that the minors D%, D® _ _ D»
are exclusively functions of the constants r; and of the coefficients ax; which are prescribed.
Hence they can be regarded as constant values independent of x or tx. Therefore it is possible
for the denominators D®W, D®_ ... D® to be included in the same constants C;, Cy, . .. Cy;, Viz.
DWin C;, D®in Gy, ... D®W in Cy.

Thus general solution (9) can be written in a simplified form containing the constants Cj,

Cs, ... Cp only

h =C ZPVent + Cp ZP e +...Cr2{ en?, ]]
1
ty =GC ZPen +C DPe® +...Chp D e,
tir =C, DL e 4 Co D2 e - ... Cp D, €%, (10)
}
ty =CDWenz + CoD@Pers® ... Cp DWW er?,
teer = C DY en® 4 Cy PP e + ... Cp D €7,
th =CPVen® 4 CDPe* +...Cp PP ern” |
In solution (10) the constants C;, Cy, . . . Cp are unknown. It is possible to determine them
by writing general solution (10) for the given boundary conditions, reordering the equations
according to C;, Cs, . . . Cy and solving the set of non-homogeneous linear algebraic equations
of the first power.
Introducing the values of C;, Gy, . .. Cy, thus obtained, into general solution (10), we otbain

the solution which corresponds exactly to the conditions and the character of the problem.
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The solution will be the set of algebraic formulae describing the temperature distributions #,(x),
Hx), . . . tao(X) required.

Sometimes, for example in the case of a multifiuid heat exchanger, which is shown in Fig. 1a
and in the general case of a channel-bundle shown in Fig. 2, where the boundary temperatures

ity . .. ta for x = 0 or x = 5 are given, the set of equations (10) need no such rearrangement.

Form (10) of the general solution is more convenient than (9) because we avoid the n arbitrary
constants af!’, of?, . . . «f” which vanish. In addition we avoid n? operations of division of two
determinants.

3. GENERAL SOLUTION OF SYSTEMS OF EQUATIONS FOR yy;

In Section 1 it has been mentioned that from matrix (2) of n? equations only (% — n)/2
equations can be used. These are either those on the upper or the lower side of the main
diagonal. Thus, in the general case of a multichannel heat exchanger with maximum possible heat
exchanges we must use the complete number of the (n? — n)/2 equations determining all the y;.

However, according to the definition yi; = #; — #; we have

Vi = Yiatr F Virnive + o V-1 (1D

Hence it is easy to observe in equation (2) and especially in equation (2a) that all the
equations for dy;;/dx with j > i + 1 are sums of the j — i corresponding equations for dyg, g+1/dx
with k in the interval i << k < j — 1. Therefore the equations with j > i + 1 do not express any
other relations in the system of equations (2a) than those with j = { + 1 and are not needed for
the solution. Thus the distribution of the temperature difference between any two channels of a
bundie containing n channels can be determined by solving the following system of n — 1 differential
equations for dyz,x+1/dx

d n n 7
X k=1 F=1
dyes + 3 an Y — 3 aa yae = 0,
dx k=1 k=1 . (]2)
d,Vnwl n
A +Zlan—1 EVn—-1,% —Zankynk =0,

and evaluating the remaining functions yy with j > 7 + 1 according to formula (11).

System (12) consists of the equations located directly above the main diagonal of matrix (2).
This system is indefinite and can be transformed into a definite one, for the functions y;; = y,,
Yos» - - » Yn—1,n in which the indices j, i denote pairs of neighbouring elements of theset 1,2,...n

To perform this transformation we must express all the equations of system (12) using the
following substitution

_d +Zaikyi]g*"zat+1 kEYi+1,k

dyi i+1

@y + ey, +.ocauyuF i ViirrH GLive Yiite+ o Qn -1 Yin—1 F GinYin)

-+ (0i+1,1ys+1.1 + Gir Vit o Qi1 Vi i1 Gt Virnt F Qi1 Vit L+t

4+ @Grnn-1VitLa-1 1 GrnaYibn)
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and on introducing equation (11), we obtain

i (275} (yz',i—l T Vi-1,i-2 " ... Vag ot ym)
+ ap (Viyic1 FYi-1i-2+ ... Va)
d -+ ai (yu)
Vi, i+1
= d a1 (i, 041) ;
dx
+ag e (Viie1 F Yirrie2)
+ain-1 igsr FVitnite T o Yu-2n 1)
L+ @ (Viie1 At Vievive = o Ve 2n-1+ Ya-1n) |
( aiv1n (Viene S Yhi-1 T Pa ) ]
' + @i,z (Vist Vi1 ... Vaa)
| i
+ a1, i1 (is,e A+ yie-1) |
i
— < Fair (Vieni) r
!
+aii,i 1 (Pivr,i41) }
. ‘ |
+ a1 (Vivive T Yivoivs - Yn—an—1) i
L @i Vit ite T+ Vit it + o In-2n-1+ Yn—-1.n) J
Next, ordering according to i, Yas...#n-1,» and taking into account that y; = —y;; and

ai =0, @i+1,: -1 = 0 we have

dyi,i+1
dx

n H
D aiw ik — 2 @i,k Vi k
k=1 k=1

. dyi, i+1
T dx

1 2
+ Y (@41, x — k) Yo T 2 @itk — Qik) Vg - -
k=1 k=1

i—1 i 'L
S @i,k — aig) YVi—1,i + (X @iv1 b+ 2 aik) yijiv1-
P k=1

k=i 1 K

n n
+ Y (ak — Gi+1,8) Yo—2n-1 -+ 2@k — @G +1,k) Yu -1,
k=n—1 k=n

n
Y (aw — (li+1,lc))'i+1,i+2. ..

L (13)

Now we express all the equations of system (12) by expansion (13) in the functions yi,,
Vo « - - Yn—1,n. After ordering the coefficients ax; for lucidity according to the numbers of the
first indices, k, and then according to the second indices, /, we obtain a system of n — 1 homo-

geneous differential equations of the first order, which can be solved.
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d n b
e (Z i -+ Z ok Yig — Z (alk — Qzk) Yos — - - - Ylaw — @)yn-va
dx k=2 k=1 k=n
dyes ! n z &
- = 2 (@ — Ay — (X ek + X asi)yas — .- - L@k  —  Gx) Yn-1im
dx k=1 k=3 k=1 k=n > (14)
d
lg?lj*z(an 1, k—ank)ylzJ-E(an Lk — Gnk) Yozt - . ““(Zan 1, ’v'}”vaﬂk)y’@'lﬂ
k=1 =1 =n k=1 J

This system contains one equation less than system (3) for the functions t,, 4, ... ;. However,
the constant coefficients at )y, Vo, . .. Jn-—1,n are more complicated than before.
For system (14) we obtain the following characteristic equation of the degree n — 1 for r;

n 1 n n
—{ri + 2 auc + ¥ aw) — XY {awe — @xr)... —~ ¥ty — aw)
k=2 k=1 k=3 k=n
E (@ — @) —(ri+ 2 a 4» asg) ... —~ Y (@ — asy)
k=1 - k=—n =0. (15
1 2 n—- 1
Y (an—1,x — Gux) Yan-1,8— k) - - "(f'z‘i‘zan LE+ 2 ank)
k=1 k=1 k=n k=1

Assuming now a priori that this equation has simple roots only, we obtain the general solution
in the form

Yio =C P et + CIR et A ... Cpoy DI elurs, 1

Yoa =C PP et + C PP e + ... Cooy G ehors,

Venk  =CL @Y T4 Co IR et + ... Cpoy DI ehart, (16)
S

Yhksn =G DWent 1+ CyD® et ... Cyoy DD eryz,
Vea1, k42 = Cl Dyrq e® + C, QP et 4. Cp 9‘*":”3&-1“@,
k+1 k+1

Yn-1,n = Cl .95,111 er % 4 C2 9522_)_] ers® + ... Cn-1 @;’L_ln eln-17, J
In this solution C,;, G, ... Cy—y are of course constants which can be obtained by making use
of the boundary conditions. D% and 29, 29,... 2P |, 2¢ ... 2¥  are as in solution (10),
the relevant determinants of the ordern — 2 obtamed from determmant ( 15) of the order n — 1,

Since the third column and the third row are not written in expression (15), because of the
lack of space, it should be observed that the formulae determining the elements of determinant
(15) are regular on both sides of the main diagonal but in a different way. The formulae for the
elements of the main diagonal are also of a different character and are regular.

The solution of equations (2a) can also be obtained in another way. By using the definition
Yy = fi — t; we have for example

Yig == Yin — YVin an
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Hence it is easy to observe in equation (2), especially in the form of equation (2a), that any of
the equations for dy;;/dx with i + 1 << j <0 »n constitutes the difference between the equation for
dyin/dx and that for dy;,/dx. Therefore the equations with j < n do not constitute relations other
than those expressed by the equations with the second index j = »n and can be omitted. Thus the
solution of system (2a) can be reduced to the solution of the system

d n n )
,,‘yir,l + 3 ai YVik - Z Ank Ynk = 0,

dx k-1 k=1

dyzn + E" ok Yor  — Y gk Yuk =0

- nKg — Vs

dx k=1 k—1 L (18)
d -~

k)’g?lin + X ilan 1L,k Vn—1,k —*kglank Yak =0, J

and some simple calculations of the remaining functions yi; with j < n according to formula (17).

System (18) is also indefinite and contains n — 1 differential equations constituting the nth column
of matrix (2) excluding the last equation on the main diagonal. We can transform this system of
equations into a definite system with r — 1 unknown functions yi (= Yin, Yen, . - - Yn-1,n). For
this purpose we express each one of equations (18) using formula (17) and bearing in mind that
Yis = —¥p, yu = 0 and a; = 0.

d
yi" + E aix Yik — E Qnk Ynk
=1
dym
=T+ (@ Y1 + G2 V2 + .- @i Yie + ... @Gn-1 Vion-1 + Qin Yin)

- (amym +ane Y2+ .. AuiYni + ... Qun-1Yn,n-1 T Qun ynn) ==

on introducing equation (17),

— dyin
dx
+ aiy QVin — Y1n) + iz Yin — Yen) + -+ @i Vin — Yin) + -+ - @i,0-1(Vin — Yn-1,1) + @in Vin — Yun)
-+ an1Yin -+ QnaYen + ... niYin + ... an, n-1Yn-1n -+ Ann Yan.
Next ordering according to Yin, Vzu, - - - Yn—1,n, W€ have
dym + E ik Yik — 2 ank Yuk ‘,
dJ’m < l& (19)
=4y T (@n1 —an) Yin -+ (ane — Qi2) Yon + ... (@ns +k§]am)ym + ... (an,n1— @i,n—1) Yn-1,n- J

Now we express equations (18) by means of formula (19), thus obtaining the following system
of n — 1 homogeneous differential equations of the first order determining the functions yi,, yen,
- Vo-1,n
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d n )
_(}1’_;" =—(Xax +a)ymt+ (@ —an)ym+... (a1,n-1 — Gn,n—1) Yn-1,m, l
k=1

d n

;’;n = (an — an1) Yin — (kglazk +an2) Yo + . .. (az,n-1 — Qn,n—1) Yn-1.n [((20)
dyn-1,n n ‘
v Pl (@n-1.1— @) yin+ (Gn-re— ) yen+ ... — (X dn-1,k+ ann-1) yn—l.n-J

k=1

This system of equations has the following characteristic equation of the degree n — 1 for r;

n
- (fi + > arw +- am) a —dp2 ... ay,n-1 — dAa,n-1
k=1
n
4y  —am  —(ri+Xaw  +ag)... Az,n-1 — An,n—1
k=1 = 0. (21)

n
ap-1,1 — An-1 an-1,2—tnz ... — (" +X -1,k + an,n

k=1

Assuming also a priori that this equation has simple roots only we obtain the general solution
for yin, Yen, - - - Yn-1,n in the same form as equation (16) for yis, Yoz, « . « Yn-1,a.
By substituting, for instance,

Yij =y — yn (22)
which is also in agreement with the definition yi; = #; — #; we obtain a system of n — 1| equations
for y1s, Y13, - - - yin. It is easy to prove that this system has the characteristic equation

— (ri + X asx + ayp) Qo3 — 3 ... Qopn — din
k=1
n
032 - a]2 — (I‘1, +k2=la3k + (113) PR asn - am _ 0. (23)
n
Ans — Gy Qns — ay3 . . . —(ri + 2 ank + aip)
k=1

Assuming again that this equation has simple roots only, we obtain the general solution for
Vi2s V13s - - - Yin in the same form as equation (16) for yis, Voss - - « Yu—1,n.

The above consideration concerning the equations for y; enable us to find the form of the
determinant in the characteristic equations and the form of general solution. Moreover it has been
shown that it is sufficient to choose n — | equations among the (n* — n)/2 equations constituting
the elements of square matrix above the main diagonal. We have confined ourselves to the case of
equations belonging to the first upper diagonal, the nth column and the first row. If equations of the
matrix are designated by points, then the system mentioned above will lie on the sides of the
rectangular triangle represented by continuous lines in Fig. 3. The results for the analogous triangle
below the main diagonal will of course be identical. This conclusion is evident since y;; = —y;; and
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Yit =Yii-1+ Yi—ni—e oo Vs = — (Voo Vst T Vieng) = — Vi
Vit =Ym — Yin = — (Yin — Vin) = = Yifs > (24)
Vi =Yin — yi = — (Yir — ¥j1) =~ Vi

It can be observed that the application of the system of equations belonging to the arbitrary
column / or the arbitrary row k leads also to a definite system of » — | equations. Then, it is
necessary to use substitution of equations (17) and (19) with / instead of »n or the substitution of
equation (22) and another one with k instead of 1. Furthermore changing the functions yy; into
—y;; we obtain a right-angle rotation of the equation-line about the intersection point with the
main diagonal. This is shown in Fig. 3 for the column / by means of a dotted line and corresponds
to the solution in the form of # — 1 functions yy1, yar, ... yi-1.1, YI,141> - - » Vine

— 1 2 el n —

{o

F1G. 3. Schematic drawing of matrix of equations
determining y;; and yj;; and configuration of the systems
of equations selected from this matrix.

Let us observe now, that it is possible to use equations located on other diagonals, not neighbouring
with the main diagonal. However, these must be supplemented by other equations located on the
segment of any column or row between the diagonal under consideration and the main diagonal.

Many different systems of equations can be chosen from the matrix of equation (2). They
correspond to various lines. Some of them are represented by a dashed line in Fig. 3. The form
of the corresponding equations and determinants may be more irregular than those obtained above.

The above observations lead to the following conclusion of practical nature.

A definite system of equations is determined by a straight, angular or ramified line, formed by
n — 1 elements of equation-matrix (2), which has common points for each of the sides of the above
triangle.

The vertices of this triangle are treated of course as common points of two legs.

In the case where this condition is not satisfied the set of equations is indefinite and (n* — n)/2
functions yi; or y; cannot be expressed in terms of » — 1 functions chosen from them. This
occurs for example in the case illustrated in Fig. 3 by the angular continuous line in the region
below the main diagonal and does not take place in the case described by the angular dashed line.

These observations may be used to the solution of practical problems with reduced number of
heat exchanges between channels.
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4. RELATIONS BETWEEN THE CHARACTERISTIC EQUATIONS OF THE SYSTEM OF EQUATIONS
FOR ¢, AND y;;

In the general case of heat exchanger with the maximum possible number of heat exchanges the
channels designated by 1, 2, . . . n can be ordered in any way with no influence on the form of
the determinants. However, in practical cases with reduced number of heat exchanges the ordering
of the labels in a certain order results in simpler determinants and more easy calculations. The
ordering of the labels can be done according to various rules. For example we can attach successive
numbers to the channels in the upward direction as is shown on the left-hand side of Fig. 1. Then,
we can use the equations located on the continuous lines in Fig. 4 for y; and on the dashed
lines for y;. The equations chosen in such a manner will concern only heat exchanging channels and
determine the distribution of the temperature difference between these channels. Tt is these
functions that are sought for in practical calculations of the mean temperature difference and
exchanger efficiency.

It is worth mentioning that a slight change in the numerical notations of the channels may cause
an essential change in the location of the line determining the system of equations chosen from matrix
(2). For example in the case of multiloop heat exchanger a change from the notations on the left-
hand side of Fig. 1(d) to those on the right-hand side will require the application of the equations in
the last column of equation matrix (2) instead of those of the first row of this matrix.

Figure 4 indicates that all the practical cases of parallel-flow multichannel heat exchangers illustrated
by Fig. 1 can be solved by using two groups of equations that of the first row or the first side
diagonal just above the main diagonal of matrix (2).

a. e
i
9.
h,
b o %
Y- o
C E \i’
] ©
N ]
AN
Lo o o]
(i —Q O =)
® ® ©---0
|
Ji:w ° ° ®
Y
) o 0---®

Fic. 4. Various schemes of the configuration of the systems
of equations, determining y;; and y;,, of more important types
for parallel-flow multichannel heat exchangers shown in Fig. 1.
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These two groups of equations for yy; correspond two variants of system of equations for t4. Each
of the latter has the same general solution but the coefficients of rx becomes zero for different .
Hence the different form of the determinants giving the characteristic equations, These forms
constitute particular, simplified cases of determinant (6).

Thus for the first variant concerning multi-loop heat exchangers only, of which the layout and
the notations are as shown in the left-hand side of Fig. 1, we obtain from determinant (6) bearing

terms different from zero.

—{ri + 3 aw) Ao iz - - Qin
k=2
an —(ri + ag) 0...
=0, (25
aal 0 '*“(ri‘*“a‘rn)... O ( )
an1 0 0... (—“i’i—%—anﬂ

We can reduce the order of this determinant by one by separating the factor r;. For this we must
perform the following operations:

We add to column 1 all the remaining columns.
We subtract row 1 from every remaining row.
We expand the determinant in minors according to the first column.

Then, since (—1)® = 0 we obtain

— (ri + ayn + ayp) &y .. — @1in
" —ay; —(ritay +ap) ... — Q1 —0. (6
— Gy —ay ... —{r+ an1 + am)

Now it is easy to prove that determinant (26), of the order n — 1, is the determinant that may
be obtained in this particular case of multiloop heat exchanger from determinant (23).

The second variant of equations for #; describes all the remaining types of heat exchangers
under consideration. These are wave, screw, spiral, Field and ordinary parallel flow heat exchangers.
Bearing in mind the fact that all the specific heat transferences a;; and ay, ap with j > i+ 1
are equal to zero, we obtain from determinant (6)

- (r’i + a12) (112 0 ‘e
ay  —(rit+an+ ay) Qg .
0 azy  —ri+ag + a34) .
0 0... ”(fi+an~1,n-2+an-1,n) An-1,n
0 0... dpn—1 — (Fi+ann-1)

=0. 27)
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The order of this determinant can also be reduced by one by separating the factor r; before the
determinant performing the following operations:

We add column 1 to column 2, resulting column 2 is added to column 3, etc. . .. the resulting
column n — | being added to the column n.
We subtract from row 1 row 2, from row 2 we subtract row 3, etc. . . . from the row n — 1 being

subtracted the row n.
We expand the determinant thus obtained in minors according to the last column.

Then since (—1)*+1 5 (0, we obtain

—(ri + agp + agy) Qa3 0
Ay — (1 + a3 + ag) agy - - -
ti 0 gy —(ritap+tag)...
0 0 0 ... —(rn+ap-r,n+ann-1)

=0. (28)

It is also easy to prove that determinant (28), of the order n — 1, can be obtained from deter-
minant (15) for the remaining particular cases of heat exchangers considered here.

The above results and the identity of determinants (6a) and (23) enable us to suppose that these
constitute some particular cases of a general relation between the characteristic equations of the
system of equations for #; and yi;. Indeed:

by adding column n — 1 of determinant (23) to column n -~ 2, column » — 2 thus obtained

to column n — 3, etc. . .. column 2 thus obtained to column 1, cancelling then all the terms
Gy, G - . . ann (=0),

subtracting now fromrow n — 1 row n — 2, from row n — 2 row n — 3, etc. ... from row 2
row 1,

we obtain determinant (15).
Furthermore:

by adding row n — 1 of determinant (15) to row n — 2, the resultingrown — 2 to row n — 3,
etc. . . . and resulting row 2 to row 1,

by subtracting column » — 2 from column n — 1, column n — 3 from column n — 2, etc. ...
and finally column 1 from column 2 and introducing ay, dg, . . . @un (= 0) to the sums,

we obtain determinant (21).
Thus we can formulate the following:

Theorem 2.

For ay = 0 the roots of the characteristic equation are the same for each system of equations in
yi; and equal to the non-zero roots of the characteristic equation of the system of equations in ty.

It follows that our a priori assumption of the existence of simple non-zero roots of the char-
acteristic equations for y;; is valid and that Theorem 1 concerns every possible group of equations
for Yig.
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5. FINAL REMARKS

(1) The equality of values of determinants (6a), (15), (21) and (23) does not imply the equality
of determinants Z{’, &\, ... &, DO, &P ... ! @@ obtained by cancelling the columns
with the same mdlces and the rows. Themem 2 enableq us to avoid only the necessity of solving
the second characteristic equation if the problem is solved for verification purposes by two methods
based on the system of equations for 7 and y;;. It facilitates therefore this verification.

(2) In the solution of problems concerning heat exchangers with curved channels such as spiral
or screw exchangers it is necessary to introduce the angular independent variable .

Then, the specific heat transferences ay; must be referred to this angular variable determining
the length of the channel, and the boundary conditions must be expressed for definite radial planes
such as it is shown in Fig. le, f.

(3) The present considerations enable us to reduce the solution of any problem of temperature
distribution in channels of parallel-flow heat exchangers to the solution of algebraic equations.
Having the general solution we avoid once and for all the derivation and solution of differential
equations determining the temperature distribution. Moreover, the computation of complicated
heat exchangers requires considerable labour as follows:

—

. Numerical solution of algebraic equation of the order n — 1.

2. Expansion of n or n — 1 determinants of the order n -~ 1 or n — 2 and calculation of their
n? or (n — 1)? values for various r;.

3. Reordering the set of n or n — | algebraic equations for given boundary conditions.

4. Expansion and calculation of #n + 1 or n determinants of the order » or n — 1 for the
determination of the constants C.

5. Computation of the distribution of the temperature or the temperature difference.

Therefore for problems with more than five heat-exchanging channels it is reasonable to use an
electronic computer or to elaborate a rapid approximate method. Further work will be devoted to
the development of this method.

REFERENCES

1. T. B. MorcEy, Exchange of heat between three fluids, Engineer, 155, 134 (1933).
2. A. 1. V. Uperwoob, The calculation of the mean temperature difference of multi-pass heat exchangers,

J. Inst. Petrol. Technol. 20, 145-158 (1934).

K. F. FisHER, Mean temperature difference correction in multipass exchangers, Industr. Engng Chem. 30, No. 4
(1938).
4. N. I. GELPERIN, Teoriya protsessa teploobmena v sistemakh s trubkahmi Filda (The theory of the heat-transfer

process in systems with the Field tubes), Khimicheskoye Mashinostroyenie. vyp. 4 (1939).

5. N. L. Hurp, Mean temperature difference in the Field or bayonet tube, Industr. Engng Chem. 38, No. 12,

1266-1271 (1946).

6. W. Oxkoro-Kutrak, Trojczynnikowe wymienniki ciepta (Three agent heat exchangers), Zeszyty Naukowe Politechniki

Slaskiej, Mechanika, Nr. 1 (1954).

7. U. MennNIckE, Wirmetechnische Eigenschaften der verschiedenen Schaltungen von Plattenwidrmeaustauschern,
Kaltetechnik, Nr. 6, 162-167 (1959).

8. A. A. McKirLLor and W. L. DuNkLEY, Plate heat exchangers, Industr. Engng Chem. 52, No. 9, 740-744 (1960).

9. G. WoscHNI, Die Berechnung von Spiralwiarmeaustauschern, Wissenschaftliche Zeitschrift der Technischen
Hochschule Dresden, 1, 37-46 (1959/60).

10. A. HuBer, Ein zusammengesetzter Warmeaustauscher, Ost. Ing. Arch. 2, 174-178 (1961).

11. G. D. RaBINovICH, Stationary heat transfer between three heat agents with parallel flow in recuperation
apparatus, Inzh. Fiz. Zh. 4, No. 11, 37-43 (1961).

12. G. LUck, Austauschflachen bei Dreistoff-Wirmeaustauschern, Int. J. Heat Mass Transfer, S, 153-162 (1962).

13. J. WoLF, Przeponowe wymienniki rownoleglopradowe o wielokrotnej wymianie ciepta (Parallel-flow recuperative
multichannel heat exchangers), Archiwum Budowy Maszyn, Nr. 1, 55-76, Warszawa (1962).

14. J. WoLr, Application to the Field tube of the general equations of parallel-flow recuperative multichannel heat
exchangers, Archiwum Budowy Maszyn, Nr. 3, 331-347, Warszawa (1962).

59

—
-



EQUATIONS OF PARALLEL-FLOW MULTICHANNEL HEAT EXCHANGERS

Résumé—L’article présente la solution générale des systémes d’équations différentielles décrivant
les répartitions de la température et de la différence de température dans les canaux d’un échangeur.
On a obtenu ces équations dans un autre article [13]. On trouve que pour n canaux le nombre
d’équations est au plus n orn — 1. Les solutions sont données sous une forme permettant d’introduire
les conditions aux limites. Ces solutions sont obtenues dans le cas général de canaux formant un
faisceau et échangeant de la chaleur conformément au principe du plus grand nombre possible
d’échanges de chaleur entre les canaux et dans la plupart des cas pratiques dans lesquels le nombre
d’échanges de chaleur est réduit.

Zusammenfassung—Die Arbeit gibt die allgemeine Losung von Differentialgleichungssystemen fiir
die Temperatur- und Temperaturdifferenzverteilung in Fliissigkeiten, die in Kanilen von Wirme-
iibertragern stromen. Diese Gleichungen wurden in einer anderen Arbeit [13] abgeleitet. Fiir #n Kanile
ergab sich eine Anzahl von hochstens » oder n — 1 Gleichungen. Die Losungen sind so wiedergegeben,
dass Grenzbedingungen eingefiihrt werden konnen. Diese Losungen wurden fiir den allgemeinen Fall
erhalten, dass die Kandle einem Biinde! vereinigt sind und zwischen den Kanilen die grosstmogliche
Wirme iibertragen wird, und fiir die hdufigsten praktischen Fille, in denen die Wirmetibertragung
geringer bleibt.

AunHoTanuA—DB craTbe NpuBOIUTCA OfIee pelileHHe CHCTeMB AUPPepeHINANbHbIX YpaBHe-
Hulf, ONMCHIBAILINX paclpeje;leHne U PAa3HOCTb TeMIepaTyp TeNJOHOCHTeJeli B KaHaIax
Teny0GoMeHHUKA. OTH ypaBHEHHA BHBoOIATCA B pabote [13]. VcranoBiewo, uto gIs n
KaHaJoB HanboJblIee YMCIO ypaBHeHMit n 11 » — 1. PemeHus npeacraBiensl B opme,
TTO3BOJIAIIRIT NCIOIb30BATh I'PAaHMYHBIE YCIOBHA. OTH PeUIeHAA [OJYYeHBl JIA 06LIero
CIOYy4YadA TYYKA KAHAJOB, B KOTOPHIX TEIIOO0OMEH NMPOMCXOTUT II0 IPHUHIUIY MAaKCHMAaIbHO
BO3MOMHOTO YHCJA TEMIOO00OMEHOB MEKIY HHMH, a TaKKe MIJIA NPAKTHYECKHX CIAVYaesn,
rie Yncio Tenja000MeHOB YMeHbIIEeHO.
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