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Abstract-The paper presents general solution of the systems of differential equations describing the 
distribution of temperature and temperature difference of fluids in exchanger channels. These 
equations have been derived in another paper 1131. It is found that for n channels the number of 
equations is at most n or PT - 1. Solutions are given in a form enabling introduction of the boundary 
conditions. These solutions are obtained in the general case of channels forming a bundle and 
exchanging heat according to the principle of the maximum possible number of heat exchanges 
between channels and in most common practical cases in which the number of heat exchanges is 

reduced. 

~1, a2, . . . an, 
ml, 

NOME%CLATURE 

integration constants; 
specific heat transference of the channel k for heat exchange be- 
tween the channel k and E of the set 1, 2, . . . n; 
integration constants; 
determinants in Cramer’s formulae; 
determinants obtained from the determinants in Cramer’s 
formulae ; 
elements of the set 1, 2, . . . n with the condition i < j imposed 
on combination ij; 
number of roots of the characteristic equation; 
elements of the numerical set 1, 2, . . . n; 
integration constants constituting roots of the characteristic 
equation; 

6% (= tj, ta, * . . t,), local temperature of the fluid flowing in the channel k of the 
set 1, 2, . . . 72; 

X9 length, or annular co-ordinate of the channel; 
yij = 6 - tj, temperature difference between fluids flowing in the channel i andj. 

1. INTRODU~ON 

PARALLEL-FLOW multichannel heat exchangers constitute a large group of heat exchangers. 
Figure 1 shows the most common practical types belonging to this group. Simple particular 
cases were considered by other authors [l-12]. A generalization of the methods for their solution 
to more complicated cases requires the solution of the general problem of heat exchange between 
n parallel channels forming a bundle as shown in Fig. 2. Such a general problem could be reduced 
to any particular case by introducing appropriate boundary conditions. 

Longitudinal distribution of the temperature in the fluids t&(x) or the distribution of the 
temperature difference y&x) = t&x) - tl(x) between two channels k and 2 in a bundle of n 
heat exchanging channels are described by systems of homogeneous linear differential equations 
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h . ” Explanations: 

1. Continuous lines denote the heat exchanging flows 
with any flow directions. 

2. The areas shaded with dashed lines denote the 
considered heat-transfer regions. The direction of 
the dashed lines indicates the direction of heat flow 
across the channel walls considered. 

3. The brackets express the fact that the flows are 
mixed so that temperature is uniform in any cross 
section of the flows taken in brackets. 

(a) Multifluid heat exchanger. 

(b) Ordinary parallel flow. 

(c) Field tube. 

(d) Multiloop, or in other words multipass shell 
heat exchanger. 

(e) Spiral heat exchanger (according to the Swedish 
Rosenblad patents, for instance). 

(f) Screw heat exchanger (a new concept of a high 
efficiency heat exchanger). 

(g) Wave-formed noncross heat exchanger (in 
line or concentric). 

(h) Wave-formed cross heat exchanger (in line or 
concentric) giving a higher efficiency in com- 
parison with last heat exchanger. 

FIG. 1. Schematic drawing of more important types of parallel-flow multichannel heat exchangers. 

of the first order [ 131. These equations have been derived under the assumption of maximum possible 
number of heat exchanges between channels and the conventional assumption of the theory of 
heat exchangers. There are : 

FIG. 2. General case of parallel-flow multichannel heat 
exchanger in the form of a bundle of channels. 

1. The heat-transfer process is stationary. 
2. The walls of the channels do not conduct heat in the direction of the axis of the channels. 
3. The heat-transfer surfaces separating fluids flowing in channels k and 1 are of equal perimeters. 



EQUATIONS OF PARALLEL-FLOW MULTICHANNEL HEAT EXCHANGERS 903 

The equations just mentioned are for tk 

dt, 
& + t,iLr 

k=l 
-k*,alstk = 0, ’ 

dt, 
& + t2i a2k -i azktk = 0, 

k=l k=l 

dtn 
dx + tni ank - iI ank tk = 0. 

k=l k=l J 

This is a system of n equations with 12 unknown functions t,, t2, . . . tn. In general, we can write 

Next for ykl we have 

dtk. 
dx + tk i akl - i akltl = 0. 

k=l k=l 

dyn n Dylan 
;il*-+~alkylk-~alkylk =oy...Jy +~alkylk-_i;a,ky,t=O, 

1 

k=l k=l k=l k=l 

dvzl n dy2n 
~+~a2kyzk-~alkYlk=O,...~~-+~azky2k.-~a~ky~k=0, 

k=l k=l k=l k=l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 
dym n dynn 
x +k~l&kynk - f$ alk Ylk = 0, . . . -dy fk$,a,x_%ak -k~,&kynk = 0. 

k=l 

In these equations k, 1 are any two elements of the set 1, 2, . . . II and akr is a specific heat 
transference* of the channel k for heat exchange with the channel 1. The set of akr constitutes 
a square matrix [akr]. The specific heat transference is defined as akl = kklhkl/FVk, where kkl = klk 
is heat-transfer coefficient between the channel k and Z, h kl = hm iS the common perimeter of 
channels and wk is a water equivalent of the fluid flowing in the channel k. 

The heat transference represents the ratio of the heat that transfers across the wall of a channel 
to the heat flowing along the wall. Therefore it characterizes the capability of the channel to ex- 
change heat with another channel or the ambient medium. Its value is 0 for adiabatic flow and co 
for perfect non-adiabatic flow. 

The sign of wk and hence of Ukl depends on the flow direction. The equations have been written 
for the same flow directions according to the direction of the co-ordinate X. Therefore for channels 
with opposite flow directions the sign of UkZ must be changed. Of course, Ukk = 0. We assume that 
the remaining akl # ark are not functions of x or tk and that they are constant. Hence equations 
(1) and (2) have in our considerations constant coefficients. 

Instead of k, I we can use the symbols i,i with the condition i < j for elements of the set 1, 2, 
. . . n. Then equations (2) which are elements of the square matrix, can be divided into three 
systems. In general we can write 

dyra n 
-& + c afk Ylk - 5 aik Ylk = 0 GW 

k=l k=l 

* In other words this is a number of heat-transfer units per unit linear or angular length of a channel k. The 
number of heat-transfer units of the channel is denoted often by NTU [W. M. KAYS and A. L. LONDON, Compact 
Heat Exchangers. McGraw-Hill, New York (195811. 
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dJj1 ‘4 
dx $- 2 ajk yjr 5 alkyik == 0. @cl 

h I h I 

System (2a) contains the equations placed above the main diagonal of equation matrix (2). The 
system (2b) contains the equations on the main diagonal and has trivial zero solutions. The system 
(2~) contains the equations placed below the main diagonal. Since ydj = ---yji equations (2~) are 
identical with equation (2a) and we can consider only (n’ -~- n)/2 equations (2a) or (2~) for dy.ii/dx 
or dyjildx. 

2. GENERAL SOLUTIONS OF THE SYSTEM OF EQUATIONS FOR fk 

System (1) can be reduced to the Cauchy normal form by omitting the terms containing the 
factors aii = 0 in the second sums and bv ordering the equations according to the subscripts 
1, 2, . . . n of 1. 

dt, 
- 5 alk tl --t- 

iii== j,, 
a,2 t, + . . . 

dt, 
hx = 

azl tL -- 2 az$ f2 t . . . 
h-l 

al, tn, 

aan tn, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

dtn 

dx = 
anIt1 + an2t2 i . . . - 5 ank tn. 

k-l 

(3) 

The functions depending linearly on their derivatives can be only exponential ones. Therefore a 
particular solution (i) of system (1) can be written in the form 

$7 = a:” erZZ t, = a(i) ertz . . t, = & erzXe (4) 
Functions (4) substituted in equations (3) give2 a set’ of homoge”neous linear algebraic equations 

of the first power. 

- (ri -t $ alk) a:’ + aI2 a$) +... aln a(i) = 0 ' II ' 
4-I 

I 
N 

(I) a,, aI -(ri j--~a2k)a~’ j-... a2n a(i) : 
A 

0 
h :I (5) I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

,, 
an1 a?’ + an2 a:’ +- . . . -~~ (ri + c ank) CL!:’ = 0. 

k = 1 J 

This set determines the constants a?), a$), . . . CL:) in terms of one of them at least a:) which should 
be chosen as an arbitrary constant, in function of the constants r( and prescribed coefficients akl. 

It is known from the theory of algebraic equations that set (5) has at least one non-zero solution 
for CL?), c+), . . . a::) if its characteristic determinant is zero. 

a,2 . . . ala 

II 
a21 --(ri+c&k)... am 

kc, 

. . . . . . . . . . . . . . . . . . . . . . . . . 

aa an2 . . . 

z 0. (6) 
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This condition constitutes the characteristic equation of system (3) and determines the constants 
ri which are the roots of this equation. The number of these roots is n because equation (6) is of 
degree n in rf. Thus functions (4) are particular solutions of equation (3) for i = 1, 2, . . . II. 

To obtain the general solution of the system (3) it is necessary to verify first, whether the roots 
are simple or multiple ones. We can exclude at once as non-interesting from the physical point of 
view the case of multiple zero-roots giving particular solutions (4) in the form of constants a(/), 
a(i’ ,(i) 

2,“’ n* 

The question of these roots is answered in a general manner by the following theorem. 

Theorem 1. 
If aii = 0, then equation (6) has simple roots only. 

Proqf 
Let us transform determinant (6) in the following manner, for instance: 

We add to column 1 all the other columns. 

We cancel the coefficients adi = 0 occurring 

We subtract row 1 from all the other rows, 

in the first column. 

We expand the determinant thus obtained with respect to the first column. 

Since (- I)” f 0, we obtain 

@23 - al,... 

a32 - al2 - C-2 + 5 a3k + a13). . . a3n - am 
k-l = 0. (6a) 

arz - aln I 
I . . . . . . . . . . . ..I.................... I 

aa2 - al2 afts- al, . . . - tri f 2 ank $- &n) 
k=l I 

It is seen that r,: is a factor of determinant (6a). This means that for ara = 0 the constant term 
of equation (6) is zero .* This equation has therefore zero-root r, = 0. 

Other roots are identical with the roots of non-homogeneous equation (6a) of the power n - 1 
obtained from homogeneous equation (6) of the degree n. 

We observe that determinant (6a) of the order n - 1 is different from every minor of the order 
n - 1 of determinant (6). Therefore the remaining roots cannot satisfy simultaneously different 
algebraic equations with different coefficients and all these minors must be different from zero and 
linearly independent. 

Now we can consider the values of the first derivative of equation (6) for uz = rl, r,, . . . rn. 
Differentiating determinant (6) we have 

*This result can be obtained in a different manner on the basis of the properties of the characteristic poly- 

nomials of a square matrix. 
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n 
- (Yi + c a2d a23 . . . 

k--l 

n 

a32 - (ri + Z a3k) . . . 
h ~~ I 

. . . . . . . . . . . . . . . . . 

an2 an3 . . . 

n 

- (ri + C 4 
k=l 

a13 I . . 

+ a31 -(Q + i; a3k) . . . 
km- I 

den 

aan 

” 

(ri + C &k) 
k-1 

ain 

agn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

an1 
n 

an3 . . . - (ri + C and 

k=l 

” 

- (r6 + C WJ 
k=l 

al2 . . . al,n -1 

II 

. . . + a21 - (0 + C a24 . . . a2,n--1 
k-l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

&L-1,2. . . -h+i: an-l,k) 

k=l 

This derivative is the sum of the n principal minors, of the order n - 1 of determinant (6) and is 
a polynomial of the degree n - 1 in ri. 

We must consider the possibility of three cases: 

1. The derivative is zero and all the summands of the sum are zero. 
2. The derivative is zero and not all the summands are zero. 
3. The derivative is different from zero and not all the summands are zero. 

Case 1 is impossible because the derivative is a linear combination of minors. Each of them 
have been found to be different from zero for all ra. 

Case 2 constitutes a singularity of case 3 and cannot influence the character of ri because the 
derivative is the linear combination of equations which are not satisfied for all ri. 

Case 3 is thus a general one. Hence it follows that the roots of equation (6) are simple.* 
On the basis of Theorem 1 we hnd that n - 1 equations of set (5) are linearly independent and 

only one constant a$) can be chosen arbitrary. The remaining constants a?), a:), . . . afyl, a:: 1 . . . a:::' 
can be expressed in terms of it. 

Denoting by Dci), Dy', D$', . . . DjL,, Djfi,, . . . 0:) the determinants in Cramer’s formulae 
obtained from the minors of the order n - 1 of determinant (6) we can express the constants a?), 
a(i) a(i) by 2,“’ n 

* Paper [14] demonstrates the validity of Theorem 1 although for solving simple problems it is not necessary to 
use it. 
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_w _ 
a:” - 

(j) y 

D(i) - ak D(i)’ 

G’ = arbitrary constant, 

a(i) 
D(i) r&Hi) 

k+l _ aci) k+! 
ktl = D(i) - k D(f) 

a(i) 

D(i) gp 

n = D(‘, = k D(i) 
a(i’ _L’_ 

(7) 

where, as is known, (i) = 1, 2, . . . n are superscripts denoting the roots of 
determinants 9?), SBy), . . . LB:‘,, B$jL,, . . . 9:) are obtained from the 
Of’, . . . D;‘,, 0:: ,, . . . 0:) by rejecting the constant factors at) (= c$), a;?), 

in successive columns 1, 2, . . . n. 

equation (6). The 
determinants D’,“, 
. . . up) occurring 

The determinant D(i) is obtained by cancelling one column k and one row of determinant (6). 
This column and row can be optional, because all the minors of determinant (6) are non-zero as 
follows from Theorem 1. The determinants 9?‘, 9y), . . . _9~‘,, LB&,, . . . 9:) are obtained from 
the minor D (Q by replacing its successive columns with the cancelled column k with opposite sign. 

It is known that the set of all n = i mRX linearly independent particular solutions in the form 

t”’ t!“, ,, _ --* tk’), (the first solution) 

t’2’ t(2) 
,, 2”” tp), (the second solution) 

where 

t(n) t(n) 
,, 23”’ tr’, (the nth solution) 

t\l) = ,y, erp 
7 til) = ai” erlz, . . . tl;” z ail) @,S, 

t\2’ = a\2)@15, t!j2) = ai2) @,z, . . . tL2) = a’,” er,X, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

t:“’ = a:“’ e’*X t(n) = ,(?I) r 5 
,*** n n en, 

determines the general solution in the form of the following set of linear combinations of 
particular solutions 

t, = C# + C&2’ + . . . c,ty, 

t2 = C&” + C&” + . . . C&‘, 
(8) . . . . . . . . . . . . . . . . . . . 

tv, = cp + C‘p + . . . C,P’ n n ” * I 
3H-H.M. 
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This solution can be written in a form more precise and more convenient for practical 
applications. Using the formulae (7) determining the constants ccy), a(2), . . . aif’ we obtain 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Q( I ) 532) CpI) 

tk+l = c, Up’ k-l 

D(l) 
@,.X $_ c ($2) k ‘-! er2x + . . . c, a(rr) k ’ ’ ert,.r; 

2 k b(2) k D(n) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

included m the constants C “‘C 
The arbitrary constants CL~ (=-: a)il’, ap’, . . . Q’) which are different for different (i), can be 

C,, viz. CL:) in C,, ap’ in C . at’ in Cn. 
Moreover, from the form’of2hkterminant (6) it is evident, thit’the minors D(l), Dt2), . . . D(n) 

are exclusively functions of the constants rt and of the coefficients ukl which are prescribed. 
Hence they can be regarded as constant values independent of x or tk. Therefore it is possible 
for the denominators D(l), D c2), . . . D(%) to be included in the same constants C,, C,, . . . C,L, viz. 
D (1) in Cr, D c2) in C,, . . . D cn) in Cn. 

Thus general solution (9) can be written in a simplified form containing the constants C,, 

c2, . . . C, only 

t1 = C, &Vrl) erls + C, BizJ erlZ + . . . CBSBi”) erP, 

t2 = Cl L3i1) erlx + C, S!j2) er8 + . . . Cn ZByJ ern5, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 

In solution (10) the constants C,, C,, . . . Cn are unknown. It is possible to determine them 
by writing general solution (10) for the given boundary conditions, reordering the equations 
according to C1, C,, . . . Cn and solving the set of non-homogeneous linear algebraic equations 
of the first power. 

Introducing the values of C,, C,, . . . Cn, thus obtained, into general solution (lo), we otbain 
the solution which corresponds exactly to the conditions and the character of the problem. 
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The solution will be the set of algebraic formulae describing the temperature distributions t&), 
t(x), . . . &(.x) required. 

Sometimes, for example in the case of a muItifluid heat exchanger, which is shown in Fig. la 
and in the general case of a channeI-bundle shown in Fig. 2, where the boundary temperatures 
fl, k?, * - . tn for x = 0 or x = s are given, the set of equations (10) need no such rearrangement. 

Form (10) of the general solution is more convenient than (9) because we avoid the n arbitrary 
constants alf), ai?, . . . aj,!’ which vanish. In addition we avoid n2 operations of division of two 
determinants. 

3. GENERAL SOLUTION OF SYSTEMS OF EQUATIONS FOR _Vfj 

In Section 1 it has been mentioned that from matrix (2) of n2 equations only (n2 - n)/2 
equations can be used. These are either those on the upper or the lower side of the main 
diagonal. Thus, in the general case of a multichannel heat exchanger with maximum possible heat 
exchanges we must use the complete number of the (n” - n)/2 equations determining all the yu. 

However, according to the definition j’ij = tt - tj we have 

.I%$ = .Yz,i+r + yi+1,i+2 + . * . Yf-l,f. (11) 

Hence it is easy to observe in equation (2) and especially in equation (2a) that all the 
equations for dyrj/dx with j > i + 1 are sums of the j - i corresponding equations for dyk, kt.I/d.X 
with k in the interval i < k < j - 1. Therefore the equations with j > i + I do not express any 
other relations in the system of equations (2a) than those with j = i + I and are not needed for 
the solution. Thus the distribution of the temperature difference between any two channels of a 
bundle containing n channels can be determined by solving the following system of n - I differential 
equations for dyk, k+Jdx 

dylz 
dx 

+ i alk Ylk 
k=l 

cb.3 

dx 
f i a2k y2k 

k=l 

n 

- c @Jk y3k = 0, 
k-l 

. . . . . . . . . . . .,,...., . . . . . . . . I 
dy,-wz n 
---&-- +kzl& - 1, k yn - 1, k -k$ta?&k.hk = 0, 

1 

and evaluating the remaining functions yu with j > i + 1 according to formula (I 1). 
System (12) consists of the equations located directly above the main diagonal of matrix (2). 

This system is indefinite and can be transformed into a definite one, for the functions ~61 = y12, 
Y23, * * . Yn - 1, 11 in which the indices j, i denote pairs of neighbouring elements of the set 1,2,. . . n. 

To perform this transformation we must express all the equations of system (12) using the 
following substitution 

dyi,r+l n 
---by tkz,alk Yfk -k$p i + 1, k yi -I- 1, k 

dyi,i+l 
= 7 + (aalYal+ ut2Yj2 4-I * * a~~f~~~-ta~,~+~yr,z+~+a~,e+2yz,~+2+...ac,~-lY~,n-~+az~y~~) 

+ ~a6+l,l~~t.~,~ + aa+l,m+i,2 + . . . ar+1,t-1y6+1,5-1+ az+~,ryz+l,a + az+~,a+~Yz+~,z+l 

+ . . . ad+l,n-lyt+l,la-l -i- Q+I,~Ys+I,~) 
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and on introducing equation (1 l), we obtain 

dyi,i+l 
ds + 

Qil (L'i,i -1 .r 4'i -- 1. i -2 -i- . . * 4‘32 + yzl) 

$- ai (Yi,i-1 + yi-1,<-2 T- . . . y32) 

. . . . . . . . . . . . . . . . . . . . . . 

+ aii (Yii) 

+ Qi,i--1 (Vi, i-!-l) 

+ ai,i+z (y&a+1 + L’i+l,i~n) 

. . . . . . . . . . . . . . . . . . . . . . 

+ ai,n-l (Y&i t1 +yi+l,i+z +. ..yn-z,n~l ) 

i- &,?I (.vi,i ~~ 1 +yi,1.i+2 - . . ..Yn -2,n -1 + yn ml,,> 

ai '1,l (Yi-1,i -Fe J+i,i&l _r . . .J’32 c y2,) 

t ai -1.2 (l’i+l,i + yi,i- 1 T . . . y32) 

. . . . . . . . . . . . . . . . . . . . . . 

-t Qi+l,i-ICYid-l,i + Yi,i-1) t 

+ ai-kl,i (YiLI,i) 

+aiil,i kl(Yi+l,i+l) 

. . . . . . . . . . . . . . . . . . . . . . 

+ Ui-l,n ml(,Vi+l,i+2 i Yil2.i i3T.. . .Y,~2,1L -1 ) 

t Qi +l,n (yi<ml,i+2+yi+2,i+3 1_ . ..Yn-z.n~lty,--l,,) J 

Next, ordering according to y12, ~23 . . . yn mm1,12 and taking into account that yij = --yii and 
aii = 0, ai +I, i +I = 0 we have 

dyi,iil n 
dx +kz,aik?'ik - i ai 11. kyi -1, k 

h=l 

2 

ai +l, k - aik) y12 $_ c (fli + 1, h- - aik) y2n . . . 

k-i 
1 

i (13) 

-t $@,+I, k - L-&k) y<-1,i + $, I ’ 
II 

U +I. k + c aik) _t’i, i + 1 ~- x (aik ~~ ai T 1, k) J’i + 1, i +e . . . 
h:=j-- 1 h=i 2 

n 

+ i; (ark - ai+l,k)yn-2,n-1 + 2: (aik - &+l,k)_b--1,n. 
k=n-1 h -=,t 

I 

J 

Now we express all the equations of system (12) by expansion (13) in the functions y12, 

Y23,. . * 
J+-~,~. After ordering the coefficients akl for lucidity according to the numbers of the 

first indices, k, and then according to the second indices, I, we obtain a system of n - 1 hano- 
geneous differential equations of the first order, which can be solved. 
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dylz - - ti %k + i a2k) ylZ -~~1r - 

n 

d.t 
azk) y33 - . . . c (Qk 

k=2 k=l k=n 

dy23 
_= 

ds i (a2k - a3lc)~~~--(2!w+ I$ a3kj:)23-.-. 5 (a2k 
h-, k=3 k=1 k=n 

EXCHANGERS 911 

- 
azdylz-1,n, 

-- 
n3d Yn -- z,n, 

(14) 

This system contains one equation less than system (3) for the functions f,, tz, , . . fla. However, 
the constant coefficients at JJ,~, yz3, . . . ys - l,lt are more complicated than before. 

For system (14) we obtain the following characteristic equation of the degree n - 1 for ri 

1 

k=I k=n 
a?& 1, k +kzla,k) 

= 0. (15) 

Assuming now a priori that this equation has simple roots only, we obtain the general solution 
in the form 

. . ...*....* . . . . . . . . . . . . . . . . ..I........ I 

yk-1, k = C, .%JI r er9 f C, gi?_, er2s + . . . Cn .-1 .9?:/) er,-lx, 
(16) 

yk,ktl = Cl D(l) erlx + C, D@) er2X + . . . C,-I D(+r) er,lx, 

yk-f-l,k+z = C, g&ii f?‘l” + c2 gj$, C?‘Zx + = . . en-1 ~:j;‘+%,-~z, 

. . . . . . . . . . . . . . . . . . . . ..I............... 

i  

.I%-1,n = C, LZ‘lf-lr erl” + C, z?$;tl, er$ + . . . G-1 .9F:,r) er,-lb. J 

In this solution C,, C,, . . . C,-I are of course constants which can be obtained by making use 
of the boundary conditions. r)(i) and By), 9&j), . . . SB~L,, Bf’_ t . . . S?EL 1 are as in solution (IO), 
the relevant determinants of the order n - 2, obtained from determinant (15) of the order n - 1. 

Since the third column and the third row are not written in expression (151, because of the 
lack of space, it should be observed that the formulae determining the elements of determinant 
(15) are regular on both sides of the main diagonal but in a different way. The formulae for the 
elements of the main diagonal are also of a different character and are regular. 

The solution of equations (2a) can also be obtained in another way. By using the definition 
yif = ts - ff we have for example 

Yij = Ytn - Yfn (17) 
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Hence it is easy to observe in equation (2), especially in the form of equation (2a), that any of 
the equations for dyii/dx with i + 1 <j < n constitutes the difference between the equation for 
dyin/dx and that for dyj,/dx. Therefore the equations with j < n do not constitute relations other 
than those expressed by the equations with the second index ,j = II and can be omitted. Thus the 
solution of system (2a) can be reduced to the solution of the system 

dyln 
-~ + 2 alk ylk 

dx k=l 
--A&%, ynk = 0, 

dyzn 
dx + ;,@k Y2k -2 ankynk =o, 

k=l 

7 

I (18) 

dyn-m ‘: 
--dxm +Lan~l,kYn-l,k-_aankYnk=0, 

k=I k=l 

and some simple calculations of the remaining functions yu with j < at according to formula (17). 
System (18) is also indefinite and contains n - 1 differential equations constituting the nth column 

of matrix (2) excluding the last equation on the main diagonal. We can transform this system of 
equations into a definite system with n - 1 unknown functions yan (= yrn, yzn, . . . Y~-~,%). For 
this purpose we express each one of equations (18) using formula (17) and bearing in mind that 
yrj = -yji, yii = 0 and aif = 0. 

Fz + 5 afk Yik -kit,&k ynk 
k=l 

dyin 
=-a;- + (ail Yii + ai2 Yr2 + . . . &i .lQl + . . . Q,n-lYi,n-1 + &n Ytn) 

- (&I Yni + an2 Yn2 + . . . ant Yni + . . . an,+1 Yn,n- i + arm Ynn) = 

on introducing equation (17), 

dYtn 
=-- 

dx 

+ &I (Yin - Yin) + a62 (Yin - Y2n) + . . . ai{ (Yin - Yin) + . . . &,n-1 (Yin - Yn-1.n) + ain (Yin - Ynn) 

+ &lYln + &2Y2n +... WYin +... an, n--l Yn-1.n + &nYnn. 

Next ordering according to yl,, yzn, . . . yn-l,n, we have 

dyin n 
x +kzlatk Yik -kg,@zk Ynk 1 

n I 
=d$ + (&--idYm+ (&2-&2)Y2n +. . . (Uni + x atk)Yin +. . . (&.a-~ - @,n-l)_Yn-l,n. ’ 

(19) 

k=l J 

Now we express equations (18) by means of formula (19), thus obtaining the following system 
of n - 1 homogeneous differential equations of the first order determining the functions yin, ypn, 
. . . Yn-1.71 
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dyn, 

dx 
=-(Z&l, + UfdY1n + (42 -he) yzn + . * * 

-1 
hn--1 - Un,n-dye1,n, / 

k==l 

dym 
dx (a21 - am) y1n -- ( c a2k fanz)yzn + * * * 

k=l 

@z,n--1 - Un,n-l)Y%-l.?t, 1 (20) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I 

dyn-l,n 
A.- (Un-1.1-Uanl)yl,+ (a,-l,2--a,2~y2,+...-_(~u,-l,~+un,n-l~Yn-~,n. ] 
u* k=l 

This system of equations has the following characteristic equation of the degree n - 1 

n 

- (0 + c Ulk i- an11 U12 -l&2 . . . ai,,-i - &,n-1 

k=l 

a21 - Un1 - (Q tkg,U2k + Un2) * . . a2,n-1 -&,n-1 

. . . . . . . . . . . . . 

= 0. (21) 

an-l,1 -an-l an-l, 2 - Un2 . . . -(ri+iia,-,,k+ Un,n-1 
k=l 

Assuming also a priori that this 
for yin, yzn, . . . yn-l,n in the same 

By substituting, for instance, 

equation has simple roots only we obtain the general solution 
form as equation (16) for y12, y23, . . . yn-l,n. 

J 

for ri 

Yij = ya1 - Yjl (22) 

which is also in agreement with the definition yrj = ti - tj we obtain a system of n - 1 equations 
for y12, Y,,, . . . yl,. It is easy to prove that this system has the characteristic equation 

u23 -q3 . . . U2n - am 

u32 - 42 - (ri f i U3k f U13). . . USn - aln 

k=l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Un2 - Ul, &a - U13 . . . - (0 + 5 Unk + Um) 
k=l 

= 0. (23) 

Assuming again that this equation has simple roots only, we obtain the general solution for 
Yl2, Yl3, * * * yin in the same form as equation (16) for y,,, y23. . . . JI%-~,~. 

The above consideration concerning the equations for yrf enable us to find the form of the 
determinant in the characteristic equations and the form of general solution. Moreover it has been 
shown that it is sufficient to choose n - 1 equations among the (n” - n)/2 equations constituting 
the elements of square matrix above the main diagonal. We have confined ourselves to the case of 
equations belonging to the first upper diagonal, the nth column and the first row. If equations ofthe 
matrix are designated by points, then the system mentioned above will lie on the sides of the 
rectangular triangle represented by continuous lines in Fig. 3. The results for the analogous triangle 
below the main diagonal will of course be identical. This conclusion is evident since yrl = -yjz and 
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It can be observed that the application of the system of equations belonging to the arbitrary 
column I or the arbitrary row k leads also to a definite system of n ~ 1 equations. Then, it is 
necessary to use substitution of equations (17) and (19) with I instead of n or the substitution of 
equation (22) and another one with k instead of 1. Furthermore changing the functions yji into 
-myif we obtain a right-angle rotation of the equation-line about the intersection point with the 
main diagonal. This is shown in Fig. 3 for the column I by means of a dotted line and corresponds 
to the solution in the form of n - 1 functions y,r, yzr, . . . yr 1, I, ye, 1+1, . . . yfTL. 

rt 2 . ..1 . . . “_ 
1 

FIG. 3. Schematic drawing of matrix of equations 
determining yij and yji and configuration of the systems 

of equations selecttd from this matrix. 

Let us observe now, that it is possible to use equations located on other diagonals, not neighbouring 
with the main diagonal. However, these must be supplemented by other equations located on the 
segment of any column or row between the diagonal under consideration and the main diagonal. 

Many different systems of equations can be chosen from the matrix of equation (2). They 
correspond to various lines. Some of them are represented by a dashed line in Fig. 3. The form 
of the corresponding equations and determinants may be more irregular than those obtained above. 

The above observations lead to the following conclusion of practical nature. 

A definite system of equations is determined by a straight, angular or ramified line, .formed by 
n - 1 elements of equation-matrix (2), which has common pointsjbr each of the sides of the above 
triangle. 

The vertices of this triangle are treated of course as common points of two legs. 
In the case where this condition is not satisfied the set of equations is indefinite and (n2 - n)/2 

functions yu or yjd cannot be expressed in terms of n - 1 functions chosen from them. This 
occurs for example in the case illustrated in Fig. 3 by the angular continuous line in the region 
below the main diagonal and does not take place in the case described by the angular dashed line. 

These observations may be used to the solution of practical problems with reduced number of 
heat exchanges between channels. 
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4. RELATIONS BETWEEN THE CHARACTERISTIC EQUATIONS OF THE SYSTEM OF EQUATIONS 
FOR tl, AND yij 

In the general case of heat exchanger with the maximum possible number of heat exchanges the 
channels designated by 1, 2, . . . n can be ordered in any way with no influence on the form of 
the determinants. However, in practical cases with reduced number of heat exchanges the ordering 
of the labels in a certain order results in simpler determinants and more easy calculations. The 
ordering of the labels can be done according to various rules. For example we can attach successive 
numbers to the channels in the upward direction as is shown on the left-hand side of Fig. 1. Then, 
we can use the equations located on the continuous lines in Fig. 4 for yij and on the dashed 
lines for yji. The equations chosen in such a manner will concern only heat exchanging channels and 
determine the distribution of the temperature difference between these channels. It is these 
functions that are sought for in practical calculations of the mean temperature difference and 
exchanger efficiency. 

It is worth mentioning that a slight change in the numerical notations of the channels may cause 
an essential change in the location of the line determining the system of equations chosen from matrix 
(2). For example in the case of multiloop heat exchanger a change from the notations on the left- 
hand side of Fig. l(d) to those on the right-hand side will require the application of the equations in 
the last column of equation matrix (2) instead of those of the first row of this matrix. 

Figure 4 indicates that all the practical cases ofparallel-flow multichannel heat exchangers illustrated 
by Fig. 1 can be solved by using two groups of equations that of the first row or the first side 
diagonal just above the main diagonal of matrix (2). 

U 
0 a... 

\ 
9 o ‘... 

\ 

@ ‘\, a... 

. . . . .\. . . . 

0 0 ‘b... 

0 0. . . 0 a \ Q ‘.‘.@ 
\ 

\ 
@ \ o...b 

. . . . h. . . . 
\ 

0 0 b...O 

FIG. 4. Various schemes of the configuration of the systems 
of equations, determining ylj and yj,, of more important types 
for parallel-flow multichannel heat exchangers shown in Fig. 1. 



916 JERZY WOLF 

These two groups of equations for yzi correspond two variants of system of equations for tk. Each 
of the latter has the same general solution but the coefficients of fk becomes zero for different th. 
Hence the different form of the determinants giving the characteristic equations. These forms 
constitute particular, simplified cases of determinant (6). 

Thus for the first variant concerning multi-loop heat exchangers only, of which the layout and 
the notations are as shown in the left-hand side of Fig. 1, we obtain from determinant (6) bearing 
in mind the fact that axl fork = 1 and I : 2, 3. . . . n or for k = 2,3, . . . n and I :== 1 are the only 
terms different from zero. 

- (Ui -I- 2 Qlk) 42 a,, . * * ale. 
k=2 

a2, - (f-i + a211 0 .I. 0 

a31 0 - pi + a31) . . . 0 

* . . . . . . *. * . ...* . ...* . . . . . . . ...* . . . . . . * 

&l 0 0 ..* (- Yf f tz,l) 

We can reduce the order of this determinant by one by separating the factor Q. For this we must 
perform the following operations : 

We add to column 1 all the remaining columns. 

We subtract row 1 from every remaining row. 

We expand the determinant in minors according to the first column. 

Then, since (- I)” rf 0 we obtain 

- (rz: + a,, 4 a12) --a13 ..* - n1lz 

- al2 -- (f?i +a31 -t Llr3.I = ‘ = -al% 

. . . . . . . . . . . . . . . . . . . . . . * . . . . . . . * 

- al2 - a,3 . . . - (0 + m + 4 

= 0. (25) 

= 0. (26) 

Now it is easy to prove that determinant (26), of the order n - 1, is the determinant that may 
be obtained in this particular case of muItiloop heat exchanger from determinant (23). 

The second variant of equations for tk describes all the remaining types of heat exchangers 
under consideration, These are wave, screw, spiral, Field and ordinary parallel flow heat exchangers. 
Bearing in mind the fact that all the specific heat transferences ati and ail, qt with j > i + 1 
are equal to zero, we obtain from determinant (6) 

-- (G + a& al2 0 . . . 

a2] -Co +azl+ a23) a,, . . 

0 #32 -'(h + a32 + a34) * 

. . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 0 *.* 

0 0 0 1.. 

. . 

. . 

- 

0 0 

0 0 

0 0 

_ . . . . . . . . . . . . . . . . . . . . . . 

(0 +a~-~~-2 +a+& ff,-1,n 

&,n-1 - Co + an,n-d 

= 0. (27) 
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The order of this determinant can also be reduced by one by separating the factor rd before the 
determinant performing the following operations : 

We add column 1 to column 2, resulting column 2 is added to column 3, etc. . . . the resulting 
column n - 1 being added to the column n. 

We subtract from row 1 row 2, from row 2 we subtract row 3, etc. . , . from the row n - 1 being 
subtracted the row n. 

We expand the determinant thus obtained in minors according to the last column. 

Then since (- 1)2”+1 # 0, we obtain 

- (ri + al2 + k) a2, 0 . . . 0 

aZl - (0 + a$3 + a34 a34 . . . 0 

rl. 0 a32 - (0 + a3p + aQ3) . . . 0 

. . . ..~................................~...~..~...1. 

0 0 0 , . . - (ri -t an-i,n + an,&l 

=O. (28) 

It is also easy to prove that determinant (28), of the order n - I, can be obtained from deter- 
minant (15) for the remaining particular cases of heat exchangers considered here. 

The above results and the identity of determinants (6a) and (23) enable us to suppose that these 
constitute some particular cases of a general relation between the characteristic equations of the 
system of equations for tk and ytj. Indeed: 

by adding column n - 1 of determinant (23) to column n - 2, column n - 2 thus obtained 
to column n - 3, etc. . . . column 2 thus obtained to 
all, a, . = . ann (= 01, 

subtracting now from row n - 1 row n - 2, from row 
row 1, 

we obtain determinant (15). 

Furthermore : 

column 1, cancelling then all the terms 

IE - 2 row n - 3, etc. . . . from row 2 

by adding row n - 1 of determinant (15) to row n - 2, the resulting row n - 2 to row n - 3, 
etc. . . . and resulting row 2 to row 1, 

by subtracting column n - 2 from column n - 1, column n - 3 from column n - 2, etc. . . . 
and finally column 1 from column 2 and introducing alI, a,,, . . . arm (= 0) to the sums, 

we obtain determinant (21). 

Thus we can formulate the following: 

Theorem 2. 
For au = 0 the roots of the characteristic equation are the same for each system of equations in 
ydj and equal to the non-zero roots of the characteristic equation qf the system of equations in tr. 

It follows that our a priori assumption of the existence of simple non-zero roots of the char- 
acteristic equations for yij is valid and that Theorem 1 concerns every possible group of equations 
for yij. 
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5. FINAL REMARKS 

(1) The equality of values of determinants (6a), (154, (21) and (23) does not imply the equality 
of determinants 9) I ’ 

Y(f) 2’. . . P/“’ hi ,, D (0, .q ,. . . . 9;:” , obtained by cancelling the columns 
with the same indices and the rows. Theorem 2 enables us to avoid only the necessity of solving 
the second characteristic equation if the problem is solved for verification purposes by two methods 
based on the system of equations for tk and JQ~. It facilitates therefore this verification. 

(2) In the solution of problems concerning heat exchangers with curved channels such as spiral 
or screw exchangers it is necessary to introduce the angular independent variable .Y. 

Then, the specific heat transferences nkl must be referred to this angular \:ariable determining 
the length of the channel, and the boundary conditions must be expressed for definite radial planes 
such as it is shown in Fig. le, f. 

(3) The present considerations enable us to reduce the solution of any problem of temperature 
distribution in channels of parallel-flow heat exchangers to the solution of algebraic equations. 
Having the general solution we avoid once and for all the derivation and solution of differential 
equations determining the temperature distribution. Moreover, the computation of complicated 
heat 

1. 
2. 

exchangers requires considerable labour as follows : 

3 -. 
4. 

5. 

Numerical solution of algebraic equation of the order n ~ I. 
Expansion of n or n ~~ 1 determinants of the order n I or n ~ 2 and calculation 
n2 or (iz - 1)2 values for various ~‘i. 
Reordering the set of n or n ~~ I algebraic equations for given boundary conditions. 
Expansion and calculation of n + 1 or n determinants of the order n or n -- 1 
determination of the constants C. 
Computation of the distribution of the temperature or the temperature difference. 

Therefore for problems with more than five heat-exchanging channels it is reasonable to use an 
electronic computer or to elaborate a rapid approximate method. Further work will be devoted to 
the development of this method. 
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R&urn&-L’article presente la solution generale des systemes d’equations differentielles decrivant 
les repartitions de la temperature et de la difference de temperature dans les canaux dun echangeur. 
On a obtenu ces equations dans un autre article [13]. On trouve que pour n canaux le nombre 

d'tquations est au plus n orn - 1. Les solutionssontdonnkes sous uneforme permettantd’introduire 
les conditions aux limites. Ces solutions sont obtenues dans Ie cas general de canaux formant un 
faisceau et echangeant de la chaleur conformement au principe du plus grand nombre possible 
d’echanges de chaleur entre les canaux et dans la plupart des cas pratiques dans lesquels le nombre 

d%changes de chaleur est reduit. 

Zusammenfassung-Die Arbeit gibt die allgemeine Losung von Differentialgleichungssystemen fiir 
die Temperatur- und Temperaturdifferenzverteilung in Fhissigkeiten, die in Kanllen von Warme- 
iibertragern stromen. Diese Gleichungen wurden in einer anderen Arbeit [13] abgeleitet. Fur n Kanale 
ergab sich eine Anzahl von hochstens n oder n - 1 Gleichungen. Die Losungen sind so wiedergegeben, 
dass Grenzbedingungen eingefiihrt werden konnen. Diese Losungen wurden fur den allgemeinen Fall 
erhalten, dass die Kanlle einem Btindel vereinigt sind und zwischen den Kanllen die grosstmogliche 
Warme tibertragen wird, und fur die hlufigsten praktischen Falle, in denen die Warmeiibertragung 

geringer bleibt. 

AHHOTaI(IM--R CTaTbe npIIBO;[IITCFI 06IIIee peIIleHIIe CHCTeMbI JI@@epeHuIIaZIbHbIx ypanHe- 

HII~, onncbIBaI0mIIx pacnpenexeaue II pa3HocTb TeMnepaTyp TenJIoHocIITe~eii B IiaHa;Iax 

TeIIJIO6OMeHHIIKa. 3TII YpaBHeHIIR BbIEIO~IITCII B pa60Te [13]. NCTaHOBJIeHO, IiT &III n 

IiaHanoB HarIfioJIbmee w4c~10 \-paBHeIIIIir n II n - 1. Pememm npe~cTauneubt B @opMe, 

nO3BOJIHIOIIIefi IICIIOJIb30BaTb rpaHWIHbIe J'GIOBI'R. 3TII peruearm IIOJIJYeHbI AJIfI otkqero 

CJIj?aFI n!_YKa KaHaJIOB, B ROTOpbIX TeIKIOO6MeH IIpOPICXOHIIT II0 IIpPIHIIIIn~ MaKCIIManbHO 

I3O3MO'~IIOrO sucna TeIIJIOOfiMeHOB MeISxy HIIMII, a TamIre JIJIfI IIpal~TIIYeCIiIIx CnyIarB, 

I'LIe %ICJIO TeIIJIOO6MeHOB J7IeIIbIIIeHO. 


